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My Research Areas

Training1 in Systems Science:

▶ Applied Probability with Amarjit Budhiraja and Shankar
Bhamidi at UNC – asymptotics of queuing models with the
power-of-choice routing. Tools: Stochastic Calculus.

▶ Design and Verification of Controllers with Nathalie Bertrand
and Blaise Genest at INRIA Rennes (France) and PS
Duggirala at UNC. Tools: Automata Theory and Games.

Current interest in Data Science:

▶ Iterative Testing with Andrew Nobel at UNC – adapt
combinatorial algorithms to noisy data by introducing
hypothesis testing at each step. Theory using a dynamical
systems perspective.

▶ Coarsened Inference with David Dunson at Duke (this talk).

1PhD in Statistics and Operations Research from University of North
Carolina (UNC) at Chapel Hill. MSc in Computer Science from CMI.
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Today’s talk

Fit Interpretable Models to Big Data
Motivation and Challenges
Coarsened Inference Framework
Asymptotics of the Coarsened Likelihood

Application to Outlier Detection and Robust Model Estimation
Population setup and assumptions
Estimator for Optimistic Kullback Leibler (OKL)
Optimistically Weighted Likelihoods (OWL)

Application Examples and Summary
Micro Credit study
Clustering of scRNA-Seq data
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Big Data and Statistical Challenges
Special issue of Statistics & Probability letters, Vol. 136

Some examples of Big Data:

1. Retail: Walmart generates 1 million customer transactions/hr.
2. Health: A billion Electronic Health Records are collected in

the US/year.
3. Science: Sloan Digital Sky Survey (200 GB/night) and Large

Hadron Collider experiments (25 petabytes/year)

Does “big” data mean that there is no need for statistics anymore?

No. The data:

▶ may have sampling or selection bias
▶ may not be very reliable
▶ may have unknown data collection artifacts

Need a new framework for statistical modeling of big data.
▶ Classical theory only assumes sampling uncertainty, leading to

order n−1/2 estimation errors.
▶ For big data (large n) these error are wrongly overconfident.
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Fit Interpretable Models to Big Data

▶ Focus on inference using interpretable models with finitely
many parameters and not black boxes for prediction.

▶ Inevitable misspecification due to: outliers, data
contamination, and assumptions like Gaussianity.

▶ But how to account for this? Usual method does not account
for additional uncertainty due to misspecification.

▶ Concern with brittleness: sometimes even slight
misspecification can have substantial impact on inference,
especially for large sample sizes (big-data settings).

6 / 33



Fit Interpretable Models to Big Data

▶ Focus on inference using interpretable models with finitely
many parameters and not black boxes for prediction.

▶ Inevitable misspecification due to: outliers, data
contamination, and assumptions like Gaussianity.

▶ But how to account for this? Usual method does not account
for additional uncertainty due to misspecification.

▶ Concern with brittleness: sometimes even slight
misspecification can have substantial impact on inference,
especially for large sample sizes (big-data settings).

6 / 33



Fit Interpretable Models to Big Data

▶ Focus on inference using interpretable models with finitely
many parameters and not black boxes for prediction.

▶ Inevitable misspecification due to: outliers, data
contamination, and assumptions like Gaussianity.

▶ But how to account for this? Usual method does not account
for additional uncertainty due to misspecification.

▶ Concern with brittleness: sometimes even slight
misspecification can have substantial impact on inference,
especially for large sample sizes (big-data settings).

6 / 33



Fit Interpretable Models to Big Data

▶ Focus on inference using interpretable models with finitely
many parameters and not black boxes for prediction.

▶ Inevitable misspecification due to: outliers, data
contamination, and assumptions like Gaussianity.

▶ But how to account for this? Usual method does not account
for additional uncertainty due to misspecification.

▶ Concern with brittleness: sometimes even slight
misspecification can have substantial impact on inference,
especially for large sample sizes (big-data settings).

6 / 33



Example I: Brittleness of Mixture models
Example from Miller & Dunson (2015) that has minor misspecification in the kernel

Data is generated from a mixture of two skew Gaussians:

Fit a Gaussian mixture model with prior on the # of components:

Brittleness: as n → ∞, the posterior favors large # of components.
Theory by Cai, Campbell, Broderick (2021). Miller & Dunson
(2015-19) introduced the coarsened posterior to fix this problem.
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Example II: Brittleness of MLE to outliers
Outliers/data contamination corresponds to misspecification in Total Variation (TV)

95% of data points are drawn
from an equal mixture of true
Gaussians while 5% are
contaminated in some way..
Can we fit our model in a way
that is resistant to the 5%
contaminated data?

▶ Maximum Likelihood Estimates (MLE) is known to be brittle
to data contamination. This has lead to the field of robust
statistics (see Maronna, Martin, Yohai, 2019).

▶ This is small misspecification in the total-variation distance.
Optimistically Weighted Likelihood (OWL) re-weights the
data points to correct for this misspecification.
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Optimism: re-weight the data to look like the model
Actively “correct” for the misspecification

Best-case data perturbation, rather than worst-case used in

Distributionally Robust Optimization (e.g. Namkoong & Duchi, 2016).
9 / 33



Formalizing what optimism means
Suppose data x1, . . . , xn

i .i .d .∼ Po and a model {Pθ}θ∈Θ is given.

We find weights w1, . . . ,wn ≥ 0 and
∑n

i=1 wi = n such that

1

n

n∑
i=1

|wi − 1| ≤ ϵ [ϵ-total variation (TV) perturbation]

θ̂ = argmax
θ∈Θ

n∏
i=1

pθ(xi )
wi [Weighted Likelihood]

that satisfy

Pθ̂ ≈
1

n

n∑
i=1

wiδxi [Optimism].

▶ In the well-specified case, optimism holds for ϵ = 0 (i.e. MLE)

▶ In the misspecified case, optimistic weights exists ⇐⇒
dTV(Po ,Pθ∗) ≤ ϵ for some θ∗ ∈ Θ (for contaminated data).

10 / 33



Formalizing what optimism means
Suppose data x1, . . . , xn

i .i .d .∼ Po and a model {Pθ}θ∈Θ is given.

We find weights w1, . . . ,wn ≥ 0 and
∑n

i=1 wi = n such that

1

n

n∑
i=1

|wi − 1| ≤ ϵ [ϵ-total variation (TV) perturbation]

θ̂ = argmax
θ∈Θ

n∏
i=1

pθ(xi )
wi [Weighted Likelihood]

that satisfy

Pθ̂ ≈
1

n

n∑
i=1

wiδxi [Optimism].

▶ In the well-specified case, optimism holds for ϵ = 0 (i.e. MLE)

▶ In the misspecified case, optimistic weights exists ⇐⇒
dTV(Po ,Pθ∗) ≤ ϵ for some θ∗ ∈ Θ (for contaminated data).

10 / 33



Formalizing what optimism means
Suppose data x1, . . . , xn

i .i .d .∼ Po and a model {Pθ}θ∈Θ is given.

We find weights w1, . . . ,wn ≥ 0 and
∑n

i=1 wi = n such that

1

n

n∑
i=1

|wi − 1| ≤ ϵ [ϵ-total variation (TV) perturbation]

θ̂ = argmax
θ∈Θ

n∏
i=1

pθ(xi )
wi [Weighted Likelihood]

that satisfy

Pθ̂ ≈
1

n

n∑
i=1

wiδxi [Optimism].

▶ In the well-specified case, optimism holds for ϵ = 0 (i.e. MLE)

▶ In the misspecified case, optimistic weights exists ⇐⇒
dTV(Po ,Pθ∗) ≤ ϵ for some θ∗ ∈ Θ (for contaminated data).

10 / 33



Contents

Fit Interpretable Models to Big Data
Motivation and Challenges
Coarsened Inference Framework
Asymptotics of the Coarsened Likelihood

Application to Outlier Detection and Robust Model Estimation
Population setup and assumptions
Estimator for Optimistic Kullback Leibler (OKL)
Optimistically Weighted Likelihoods (OWL)

Application Examples and Summary
Micro Credit study
Clustering of scRNA-Seq data

11 / 33



Handle misspecification by “coarsening” posterior
From Miller and Dunson (2019). Trust the data less.

We observe data x = x1, . . . , xn
i .i .d .∼ Po from unknown Po ∈ P(X ).

Bayesian model: X = X1, . . . ,Xn
i .i .d .∼ Pϑ and ϑ ∼ π0

where {Pθ}θ∈Θ is a parametric family, π0 is a prior on Θ.

Empirical measure: P̂x
.
= 1

n

∑n
i=1 δxi is a sufficient statistic.

Standard Posterior:

p(dθ|x) .
= Pr

(
ϑ ∈ dθ

∣∣P̂X = P̂x

)
Coarsened (C-) posterior:

pϵ(dθ|x)
.
= Pr

(
ϑ ∈ dθ

∣∣d (P̂X , P̂x) ≤ ϵ
)

▶ Allows misspecification: P̂X is ϵ-close in the discrepancy d on
P(X ) (but not necessarily equal) to the observed data P̂x .

▶ pϵ(dθ|x) → p(dθ|x) as ϵ → 0 under suitable conditions.
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Computation of coarsened posterior
Bayes rule shows: pϵ(dθ|x) ∝ Lϵ(θ|x)π0(dθ) where

Lϵ(θ|x)
.
= Pr

(
d (P̂X , P̂x) ≤ ϵ

∣∣ϑ = θ
)

is the coarsened likelihood. But difficult to use MCMC, as even
evaluating Lϵ(θ|x) involves estimating a high dimensional integral.

Coarsened posterior is an average of standard posteriors:

pϵ(dθ|x) = E
[
p(dθ|X )

∣∣∣∣d (P̂X , P̂x) ≤ ϵ

]
.

Rejection sampling based approach leads to Approximate Bayesian
Computation (ABC), which is very slow because the conditioning event is
“rare”.

Asymptotic approximation: When d = KL and ϵ ∼ Exp(α), Miller &
Dunson (2019) develop the power-likelihood approximation:∫

Lϵ(θ|x)αe−αϵdϵ ∝̃
n∏

i=1

pθ(xi )
α

n+α = L(θ|x) α
n+α

Usual likelihood with finite effective sample size n0 =
nα
α+n < ∞.
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Sanov’s theorem from large deviations
Setup: X = X1, . . . ,Xn

i .i .d .∼ Pθ and P̂X = 1
n

∑n
i=1 δXi

∈ P(X ).

Sanov’s theorem: As n → ∞, the random measures P̂X satisfy a
Large Deviations Principle on P(X ) with rate · 7→ KL(·|Pθ), the
Kullback Leiber divergence.

Intuitively:
Pr[P̂X ≈ Q|θ] = e−nKL(Q|Pθ)+o(n),

and that for nice subsets B ⊆ P(X ):

Pr
(
P̂X ∈ B

∣∣θ) = e−n infQ∈B KL(Q|Pθ)+o(n).

▶ Really only useful when infQ∈B KL(Q|Pθ) > 0 =⇒ Pθ /∈ B.

▶ Recall Gliveco Cantelli: P̂X → Pθ as n → ∞. Thus a
statement about the tail distribution of P̂X .

▶ KL divergence: related to information theory and likelihoods!
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and that for nice subsets B ⊆ P(X ):

Pr
(
P̂X ∈ B

∣∣θ) = e−n infQ∈B KL(Q|Pθ)+o(n).

▶ Really only useful when infQ∈B KL(Q|Pθ) > 0 =⇒ Pθ /∈ B.

▶ Recall Gliveco Cantelli: P̂X → Pθ as n → ∞. Thus a
statement about the tail distribution of P̂X .

▶ KL divergence: related to information theory and likelihoods!
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Application of large deviations to coarsened inference
Recall: Coarsened inference conditions on the event E = {P̂X ∈ Bϵ(P̂x)}
when X = X1, . . . ,Xn

i.i.d.∼ Pθ.

Here Bϵ(P̂x) = {Q : d (Q, P̂x) ≤ ϵ} is the ϵ neighborhood around the
observed empirical distribution P̂x .

Sanov’s theorem:

Lϵ(θ|x)
.
= Pr (E |ϑ = θ) = e−nIϵ(θ)+oP (n),

where
Iϵ(θ)

.
= inf

Q∈P(X )
d (Q,Po)≤ϵ

KL(Q|Pθ).

is called the Optimistic Kullback Leibler (OKL).

▶ d must be a nice, e.g. Maximum Mean Discrepancy, or
Wasserstein, or smoothed TV distance.

▶ Search over “optimistic” data Qθ in the (d , ϵ) ball around Po .

▶ Use: Finding θ ∈ Θ that maximizes θ 7→ Lϵ(θ|x) corresponds to
minimizing OKL: θ 7→ Iϵ(θ) (asymptotically).

▶ Case ϵ = 0, θ∗ is MLE ⇐⇒ θ∗ ∈ argminθ∈Θ KL(Po |Pθ).
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Robust model estimation: setup and assumptions
Setup: robustly fit model family
{Pθ}θ∈Θ based on data

x1, . . . , xn
i .i .d .∼ Po .

ΘI = {θ | dTV(Po ,Pθ) ≤ ϵ} are
robustly identified parameters.

Assumption: ΘI ̸= ∅.

{Pθ}θ∈Θ

Bϵ

Po

Bϵ = {Q : dTV(Q,Po) ≤ ϵ}

We find a point from ΘI

by minimizing an estimator
for OKL (right) w.r.t. θ: Iϵ(θ) = inf

Q:dTV(Q,Po)≤ϵ
KL(Q|Pθ).

▶ Jointly minimize with respect to θ
(model) and Q (pseudo data). Use
alternate minimization in practice.
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Estimation of the OKL using data re-weightings
Finite spaces

Given data x1, . . . , xn ∼ Po ∈ P(X ), we use the estimator

Îϵ(θ) = min
w∈∆n

1
2
∥w−o∥1≤ϵ

n∑
i=1

wi log
nwi p̂(xi )

pθ(xi )

for Iϵ(θ) = minQ:dTV(Q,Po)≤ϵ KL(Q|Pθ) and o = (1/n, . . . , 1/n).

Theorem (D., Tosh, Knoblauch, Dunson, 2023)

If X is finite and supp(Pθ) ⊆ supp(Po) for some θ ∈ Θ, then

Îϵ(θ) = min
w∈∆n:dTV(Qw ,P̂)≤ϵ

KL(Qw |Pθ) and
∣∣∣Iϵ(θ)− Îϵ(θ)

∣∣∣ = Op(n
−1/2)

where Qw =
∑n

i=1 wiδxi .
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Estimation of the OKL using data re-weightings
Continuous space X ⊆ Rd

Let κh be the Gaussian kernel on Rd with bandwidth h > 0,

qw (x) =
∑n

i=1 wiκh(xi , x), and A ∈ Rn×n with Aij =
κh(xi ,xj )
np̂(xi )

.

Îh,ϵ(θ)
.
= min

v∈A∆n
1
2
∥v−o∥1≤ϵ

n∑
i=1

vi log
nvi p̂(xi )

pθ(xi )

= min
w∈∆n

dTV(qw ,p̂)≤ϵ

1

n

n∑
i=1

qw (xi )

p̂(xi )
log

qw (xi )

pθ(xi )
≈ min

w∈∆n
dTV(qw ,po)≤ϵ

KL(qw |pθ).

Theorem (D., Tosh, Knoblauch, Dunson, 2023)

If X ⊆ Rd is compact and smooth densities po , pθ are supported
on X : ∣∣∣Iϵ(θ)− Îh,ϵ(θ)

∣∣∣ = Op(n
−1/2h−d +

√
h).
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Algorithm to estimate the OKL minimizer.

Population OKL minimization:
Alternatively update pseudo-data Q
and model θ until convergence.
I-projection:

Qt = argmin
Q:dTV(Q,Po)≤ϵ

KL(Q|Pθt )

Maximize log-likelihood:

θt+1 = argmax
θ∈Θ

∫
log pθ(x)Qt(dx)

Estimating the OKL minimizer from
samples x1, . . . , xn ∼ Po .
Intuition: Qt ≈

∑n
i=1 w

t
i δxi .

Approx I-projection:

w t+1 = argmin
w∈∆n

1
2∥w−o∥1≤ϵ

n∑
i=1

wi log
nwi p̂(xi )

pθt (xi )

Weighted-MLE:

θt+1 = argmax
θ∈Θ

n∑
i=1

w
(t+1)
i log pθ(xi )

▶ w -step is convex: Alternating
Direction Method of
Multipliers (ADMM) [Parikh &
Boyd, 2014]

▶ θ-step: modification of
algorithms for MLE.
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Optimistically Weighted Likelihoods (OWL)
▶ Theoretically motivated by the coarsened likelihood framework

of Miller & Dunson (2019)
▶ We estimate parameter and data-weights by repeated

weighted likelihood maximization

θt+1 = argmax
θ∈Θ

n∏
i=1

pθ(xi )
wi (θt)

where weights {wi (θ)}ni=1 sum to n and I -projection onto the
ℓ1 ball: ∥w(θ)− 1∥1 ≤ nϵ.

▶ ϵ ∈ (0, 1) denotes amount of model misspecification, which
can automatically be tuned from data.

Features
▶ Weights assign a confidence to each data point.

▶ Implemented for a variety of models with product likelihoods:
Linear/Logistic Regression and Bernoulli/Gaussian Mixtures.

▶ Customizable code: https://github.com/cjtosh/owl
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Micro-credit study by Angelucci et al. (2015)
Randomized credit rollout across 238 geographical regions in
north-central Sonora state, Mexico; and 18-36 months after
rollout, surveyed n = 16, 560 households across the region to
understand impact.

Consider the Average Treatment Effect (ATE) on household profits
(i.e. the coefficient β1) in the model:

Yi = β0 + β1Ti + εi i = 1, . . . , n

Yi = Profit of household i (outcome; units: USD PPP/2 weeks),
Ti ∈ {0, 1} indicates whether household i falls in a region where
credit rollout happened (treatment).

OLS estimate of β1 is brittle [Broderick, Giordano & Meager, 2023]

Removing a single household changes β1 from −4.55 (s.e. 5.88) to
β1 = 0.4 (s.e. 3.19); removing 15 households makes β1 significant.
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Estimating β1 from the micro-credit study using OWL

▶ We estimate β1 using OWL for 50 values of ϵ placed uniformly on
log10-scale from −4 to −1.

▶ Tuning procedure selected ϵ0 = 0.005. OWL down-weighted 1% of the
households with extreme profit values.

▶ Estimated ATE of β1 = 0.6 USD PPP/2 weeks at ϵ = ϵ0, is stable with
respect to ϵ, and has relatively narrow bootstrap confidence bands than
ϵ ≪ ϵ0. 27 / 33
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Clustering single cell RNA-Seq using Gaussian mixtures

GSE81861 cell line dataset from Li et al. (2017)

Expression measurements for 7666 genes across 531 cells
(after processing as in [Chandra et al., 2020]).

Ground truth cell-lines available:

Cell line A549 GM12878 H1 H1437 HCT116 IMR90 K562
# 74 126 164 47 51 23 46

making this ideal to validate clustering methods.

▶ We use PCA to project expressions to 10 dim and fit a
mixture of 7 Gaussians using OWL for a grid of ϵ values.

▶ Compared the resulting clustering to the ground truth cluster
labels using adjusted Rand Index [Hubert and Arabie, 1985]
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OWL improves clustering, especially on inliers

Left: Adjusted Rand index (ARI) over the entire dataset for OWL.

Right: ARI of inliers for the OWL methods.
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Visualizing clusters using UMAP
Uniform Manifold Approximation and Projection. See GM12868 v.s. K562, and IMR90.
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Summary

▶ Introduced the general coarsened likelihood framework from
Miller & Dunson (2019) for inference under small
misspecification in terms of a discrepancy d that define
neighborhoods of empirical distribution of the observed data.

▶ Asymptotically approximated the coarsened likelihood using
large deviation results. Used the large deviations formulas
based on d = dTV to describe a practical methodology (OWL)
to robustly fit models and detect outliers.

▶ OWL (Optimistically weighted likelihood) estimates the OKL
minimizer by finding optimistic data re-weightings via
alternating optimization. Weights down-weighted outliers in
Micro credit study and improved clustering on inliers in
scRNASeq data.
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Thanks for your attention!

Code https://github.com/cjtosh/owl

Preprint https://arxiv.org/abs/2303.10525
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▶ R01ES027498, U54 CA274492-01 and R37CA271186 from
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▶ Collaborators: Chris Tosh, Jeremias Knoblauch, and David
Dunson.
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Further research directions

▶ Use of Wasserstein neighborhoods to fit models with
misspecified supports. For example, this allows us to fit
models with discrete support to continuous data to perform
data compression with uncertainty. Application: Brain
Connectome.

▶ Coarsened inference for Hidden Markov Models. We can use
LD formulas for HMMs (Hu and Wu, 2011) and divide &
conquer ideas for fast posterior computation in long time
series (Ou, Sen, Dunson, 2021).

▶ Connection to missing data problems and data privacy.
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Simulation study overview

We adversarially corrupted between 0% to 25% of the observations
with the largest likelihood values.

On the corrupted data we ran:

▶ MLE

▶ OWL with, both, known ϵ and tuned value of ϵ.

▶ Robust estimation methods when available: like Huber
regression & RANSAC MLE.

We repeated the experiment 50 times to obtain error-bars. MLE
on the uncorrupted sample was used as baseline.

OWL estimates with tuned ϵ are resistant to outliers, and have
better (or comparable) performance than other methods.
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Gaussian Mean Estimation
OWL with and without the KDE have similar performance
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Linear Regression
OWL competitive with RANSAC MLE (left) and Huber Regression (right)
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Logistic Regression
OWL most robust in terms of test-accuracy.
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Mixture models
OWL does better than MLE for mixture models.
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What is happening? Let’s visualize the data
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82% of the household profits are zero (after imputation).

15 households removed by zaminfluence package [Broderick et al.]
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OWL implementation details
Omitting KDE, extension to product likelihoods, and automatic tuning of ϵ

▶ Theory requires access to density estimator p̂, but in practice
we continue to get good empirical performance by omitting it.

▶ Thus we use the OKL estimator:

Îϵ(θ) = min
w∈∆n

1
2
∥w−o∥1≤ϵ

n∑
i=1

wi logwi −
n∑

i=1

wi log pθ(xi )

which is easy to extend to likelihoods that take a conditionally
product form, including regression and mixture models.

How to set parameter ϵ ∈ (0, 1)?

▶ The non-increasing population function R(ϵ) = minθ∈Θ Iϵ(θ)
has a kink at ε0 = minθ∈Θ dTV(p0, pθ) after which it remains
zero and A1 holds.

▶ We use an automatic procedure to find the best “kink”
[Satopaa et al. 2011] in the R̂(ϵ) = minθ∈Θ Îϵ(θ) v.s. ϵ plot.
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Choice of parameter ϵ0 = 0.005
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OWL at ϵ0 downweight 1% households with extreme profit.
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OWL ATE estimates as function of ϵ
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The leftmost point is the MLE. Confidence bands correspond to
Outlier-Stratified Bootstrap.
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