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Two problems that we will consider

Finding Bimodules in high-dimensional multi-view data
Bimodule: group of features from two data matrices that have significant aggregate correlation.

Application to eQTL analysis in genomics: discover SNP-gene association networks.

How to do this in a statistically principled and computationally efficient way?

R software package : https://github.com/miheerdew/cbce.

Joint work with John Palowitch, Mark He, Michael I. Love, and Andrew B. Nobel.

Limit theorems for the Supermarket model
Supermarket model: A processing system with multiple queues, where jobs are assigned to
queues using a randomized routing scheme.

Motivated by load balancing problem in large data centers, we obtain limit theorems for the
Supermarket model as the number of queues increases.

Joint work with Shankar Bhamidi and Amarjit Budhiraja.
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Context for the Supermarket model: data centers

Figure: Google data center in Eemshaven, Netherlands (google.com/about/datacenters/)
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The Supermarket model with parameters (λ,d ,n)
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Figure: Supermarket model with n queues and d = 2.

# of choices: d ∈ {1, . . . , n}

Communication per job: d

Compare d = 1 vs. d = n.

“Power of choice”

d = 2 is much better than d = 1
Analysis for fixed λ < 1 and d ≥ 2, as n ↑ ∞.
Vvedenskaya, Dobrushin and Karpelevich 1996; Mitzenmacher

2001; Luczak and McDiarmid 2006.

Interest in heavy traffic: λ = λn ↑ 1

d = n can achieve optimal load balancing
as λn ↑ 1 and n ↑ ∞.

d = O(1) cannot achieve optimal load
balancing.

Eschenfeldt and Gamarnik (2016, 2018)

As n ↑ 1 and λn ↑ 1, we prove functional

LLN and CLT when d = dn satisfies

1 ≪ dn ≤ n.
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Finding Bimodules in multi-view data
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Multi-view data and a related exploratory problem

S

T

Samples

Measurements of two types of features
S = {s1, . . . , sp} & T = {t1, . . . , tq}
on n common samples. Typically p, q ≥ n.

Examples

Samples are temporal measurements from
S ={p temperature stations} and
T ={q precipitation stations} worldwide.

Taken from diverse habitats, samples measure
S ={p environmental features} and
T ={q microbial species} abundance.

How are features from S and T associated?
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Exploratory problem of interest

S

T

Samples

cross-correlation

We distinguish between two types of correlations

cross-correlation (CC) b/w features s ∈ S and t ∈ T

intra-correlation b/w features s, s′ ∈ S or t , t ′ ∈ T .

Bimodule (rough definition)
(A,B) is a bimodule if

A ⊆ S and B ⊆ T

A and B have significant aggregate CC.

Motivation to aggregate CCs
Capture complex associations between feature
groups A and B

Improve power by amplifying weak signal
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Bimodules from a network perspective
cross-correlation (CC) networks

S = {s1, . . . , s5}, T = {t1, . . . , t4}
Weights: sample correlation (abs.)

Bimodules: communities in this network.

Example: A = {s3, s4, s5} and B = {t3, t4}.

Community (rough definition)
Nodes in a community are more correlated,
on average, to nodes inside the community
than to nodes outside.
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Cross-correlation (CC) matrix may not be sufficient
role of intra-correlations

.99

.99

A = {s1, . . . , s5}, B = {t1, t2, t3}

(A,B) is a community in the CC network.

Likely to see this community by chance in
random data?

Yes

Depending only on CC can mislead.

Must account for intra-correlations
while assessing bimodule significance.
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Stable Bimodules

s

t
r2 (s,

t)

S T

A B

r 2
(s, B)

.

.

.

.

.

.

Notation

r(s, t): sample correlation of s, t

r 2(A′,B′)
.
=

∑
s∈A′

∑
t∈B′ r 2(s, t)

Stable bimodule (definition)
(A,B) is a stable bimodule if

A = {s ∈ S | r 2(s,B) is significant}, and

B = {t ∈ T | r 2(A, t) is significant}.

Recursive definition like a community; made precise
using hypothesis testing ( details ).

Permutation test accounts for intra-correlations.

Benjamini-Yekutieli correction for multiple testing.

Interested in connected stable bimodules
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Bimodule Search Procedure (BSP)

s

t
r2 (s,

t)

S T

A B

r 2
(s, B)

.

.

.

.

.

.

r 2(A,B)
.
=

∑
s∈A

∑
t∈B r 2(s, t)

Note, stability is just a fixed point condition:

A = {s ∈ S | r 2(s,B) is significant} .
= ΓS(B)

B = {t ∈ T | r 2(A, t) is significant} .
= ΓT (A).

Find stable bimodules by iterating

(Ak ,Bk ) = (ΓS(Bk ), ΓT (Ak−1)) k = 1, 2, . . .

till sets don’t change, for suitable A0 ⊆ S.

Bimodule Search Procedure (BSP)
Starting from singletons A0 = {s} ∈ S, iterate the

definition till fixed point is reached (or sets cycle).

Covergence on real data Example of an iterative search
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Data from GTEx project (v8)
from gtexportal.org

NIH funded GTEx project
A large collection of multi-tissue eQTL
data from donors.

Individuals densely genotyped
Measurements for 4.9 million SNPs
encoded as {0, 1, 2} (MAF).

Expression measured in multiple
tissues
RNA sequencing used to measure
expression of genes.

Normalization, quality control, and
covariate correction performed.

Genomics glossary
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eQTL analysis for Thyroid data

n = 574

S
:

55
6K

S
N

P
s

T
:

26
K

ge
ne

s

s

t

Thyroid expression data from n = 574 donors for

T = {26K genes} and

S = {556K representative SNPs} (after LD-pruning)

standard eQTL analysis

Find pairs s ∈ S and t ∈ T for which r 2(s, t) is significant

after correcting for multiple-testing (a statistical burden).

Finding SNP-gene bimodules (CONDOR)
Platig et al. (2016) find SNP-gene bimodules by

community detection on a bipartite graph obtained from

standard eQTL analysis.

They show that SNP-gene bimodules may have better

functional interpretation than individual SNP-gene pairs.

Miheer Dewaskar (UNC Chapel Hill) Bimodule Search and Supermarket Model 13 / 26



eQTL analysis for Thyroid data

n = 574

S
:

55
6K

S
N

P
s

T
:

26
K

ge
ne

s

s

t

Thyroid expression data from n = 574 donors for

T = {26K genes} and

S = {556K representative SNPs} (after LD-pruning)

standard eQTL analysis

Find pairs s ∈ S and t ∈ T for which r 2(s, t) is significant

after correcting for multiple-testing (a statistical burden).

Finding SNP-gene bimodules (CONDOR)
Platig et al. (2016) find SNP-gene bimodules by

community detection on a bipartite graph obtained from

standard eQTL analysis.

They show that SNP-gene bimodules may have better

functional interpretation than individual SNP-gene pairs.

Miheer Dewaskar (UNC Chapel Hill) Bimodule Search and Supermarket Model 13 / 26



Running BSP on GTEx Thyroid data
Highlights of results and validation

BSP has a single free parameter α ∈ (0, 1) that was chosen using permutation to control a
network-based false-discovery rate.

Scatter plot BSP found 3305 bimodules in 4.7 hrs (20-core/2.4 GHz machine) of various sizes,
having 1-1000 SNPs & 1-100 genes.

Locations analysis Local and distal SNP-genes pairs in bimodules: most bimodules had at least
one local SNP-gene pair, while larger bimodules had distal associations.

Network analysis Connected SNP-gene networks underlying bimodules. Note: stable bimodule
are defined in terms of aggregate associations, and all SNP-gene pairs in a bimodule do not
have to be eQTLs.

BSP vs. standard analysis BSP Bimodules vs. standard eQTL-analysis: most bimodules were
connected under eQTLs, but new potential eQTLs were discovered by the remaining
bimodules. Most of distal eQTLs, and half of local eQTLs were found by bimodules.

GO analysis Gene ontology analysis : many bimodule were enriched for overlap with biological
process related gene sets from the GO database, but the significant GO terms did not seem
thyroid related.

Miheer Dewaskar (UNC Chapel Hill) Bimodule Search and Supermarket Model 14 / 26



Limit theorems for the Supermarket Model

nλn

Dispatcher

1

1

1

.

.

. n queues
1

1

dn

Figure: Supermarket model with parameters (n, dn, λn).
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Stochastic process for the Supermarket model

Convenient state descriptor
Gn,i (t) = fraction of queues with length ≥ i at
time t .

Example: queues arranged in increasing order

(n = 10).

Gn,1 = 10/10
Gn,2 = 10/10

.

.

.

Gn,i = 7/10

Image from Mukherjee et al. (2016)

Observe:

1 = Gn,0(t) ≥ Gn,1(t) ≥ Gn,2(t) . . . ≥ 0

Hence Gn(t)
.
= (Gn,i(t))i≥1 ∈ ℓ↓1 , where

ℓ↓1
.
= {(x1, x2, . . .) | x1 ≥ x2 ≥ . . .} ∩ ℓ1

Remarks
Gn(t) is the empirical distribution

of queue lengths at time t .

Due to symmetry of queues, Gn(t)

is an ℓ↓1 valued CTMC.
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Functional law of large numbers with growing choices
Previous work

First order behavior: want to show Gn
P−→ g in D

ℓ
↓
1
[0,∞) as n → ∞.

Mukherjee, Borst, Leeuwaarden, and Whiting (2016)

If λn → λ ∈ [0, 1), dn → ∞, and suitable conditions hold at t = 0 as n → ∞, then

The sequence {Gn}n∈N is tight in the space of ℓ↓1 valued functions.

If Gnk ⇒ G for some sub-sequence {nk}k∈N, then G satisfies a certain differential

equation.

Universality: the differential equation does not depend on the rate at which

dn → ∞.

Interchange of limits: Gn(∞) ⇒ δ(λ,0,0,...) where (λ, 0, 0, . . .) ∈ ℓ↓1 is the unique

fixed point of the differential equation.

Uniqueness of the solution to the differential equation, and hence convergence of Gn,

was not ultimately shown.
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Functional law of large numbers with growing choices

We complete the proof.

(Bhamidi, Budhiraja, D.) FLLN as dn → ∞ and λn → λ < ∞

If Gn(0)
P−→ (r1, r2, . . .) in ℓ↓1 , then Gn

P−→ g in D
ℓ
↓
1
[0,∞) where (g, v) ∈ C

ℓ
↓
1 ×ℓ∞

[0,∞) is

the unique solution that solves the system

(gi(t), vi(t)) = (Γ1, Γ̂1)

(
ri −

∫ ·

0
(gi(s)− gi+1(s))ds + vi−1(·)

)
(t) ∀t > 0, i ∈ N

and v0(t) = λt .

The limit satisfies reflected integral equations. Reflection comes from:

Skorokhod map (SM) for a function f with reflection from above at α ∈ R

Γα(f )(t)
.
= f (t)− Γ̂α(f )(t) ≤ α is the reflected process, where

Γ̂α(f )(t)
.
= sups∈[0,t](f (s)− α)+ is the minimal push.

Uniqueness follows from basic properties of SM.
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FLLN with growing choices: proof idea

Representation in terms of time-change of Poisson process
There are independent unit-rate Poisson Process {Ni,+,Ni,−}i≥1, so that for each t > 0

Gn,i (t) = Gn,i (0)+
1
n

N+,i

(
nλn

∫ t

0
Gdn

n,i−1(s)− Gdn
n,i (s)ds

)
−

1
n

N−,i

(
n
∫ t

0
Gn,i (s)− Gn,i+1(s)ds

)

Semi-martingale decomposition using compensators of the point processes

Gn,i (t) = Gn,i (0) + λn

∫ t

0
(Gdn

n,i−1(s)− Gdn
n,i (s))ds −

∫ t

0
(Gn,i (s)− Gn,i+1(s))ds + Mn,i (t)

Martingale convergence and tightness of {Gn}n≥1

For any T > 0, supt∈[0,T ] ∥Mn(t)∥2
P−→ 0 where Mn = (Mn,1,Mn,2, . . .). Can then show that

{Gn}n∈N is tight. Then by Skorokhod embedding assume (Gnk ,Mnk ) → (G, 0) a.s. uniformly.

Finally, show G satisfies the integral equation. Key step: Since dn → ∞,

vi (t)
.
= limn λn

∫ t
0 Gdn

n,i (s)ds satisfies
∫ t

0 (1 − Gi (s))dvi (s) = 0 and hence the SM emerges.
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Functional central limit theorem with dn ≫
√

n log n
Previous work

Assume
√

n(1 − λn) → β > 0 (Halfin-Whitt regime)

Let Yn
.
=

√
n(Gn − e1) (hence we expect Gn,1 = 1 − o(1) and Gn,2 = o(1))

Assume Yn(0) converges in probability.

Eschenfeldt and Gamarnik (2015)
If dn = n then as n → ∞

Yn ⇒ (Y1,Y2, 0, . . .) in a suitable function space.

where (Y1,Y2) is a 2D reflected diffusion process driven by a 1D Brownian motion.
Limiting system

Mukherjee, Borst, Leeuwaarden, and Whiting (2016)

The above result continues to hold if dn ≫
√

n log n.

{Yn}n≥1 is not tight if dn ≪
√

n log n.
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Center around Near Equilibrium point for dn ≤
√

n log n

Recall, semimartingale representation for our system:

Gn(t) = Gn(0) +
∫ t

0
[an(Gn(s))− b(Gn(s))]ds + Mn(t)

Near Equilibrium (NE) point µn ∈ ℓ↓1 is the unique solution to

an(µn) = b(µn)

Remarks

Since the drift vanishes in the first display and Mn
P−→ 0, if Gn(0) ≈ µn we expect

Gn(t) ≈ µn over compact times t .

µn ∈ ℓ↓1 is the state where inflow rate equals the outflow rate for each coordinate.

E.g. when sampling with replacement µn = (λn, λ
dn
n , λ

dn+d2
n

n , λ
dn+d2

n+d3
n

n , . . .) ∈ ℓ↓1 .

Convergence will be shown for the process Zn
.
=

√
n(Gn − µn) for 1 ≪ dn ≤ n.
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FCLT for dn ≫
√

n centered around NE points

(Bhamidi, Budhiraja, D.) FCLT as dn ≫
√

n and 1 − λn = log dn
dn

+ αn√
n

If αn → α ∈ [0,∞], Zn(0)
P−→ (z1, z2, 0, 0, . . .) ∈ ℓ2 and z1 ≤ α as n → ∞, then

Zn ⇒ (Z1,Z2, 0 . . .) in Dℓ2 [0,∞) where (Z1,Z2, η) the reflected diffusion process

(Z1(t), η(t)) = (Γα, Γ̂α)

(
z1 −

∫ ·

0
(Z1(s)− Z2(s))ds +

√
2B(·)

)
(t)

Z2(t) = z2 + η(t)−
∫ t

0
Z2(s)ds,

where B is a 1D standard Brownian motion.

Remarks

Allows for (λn, dn) = (1 − n−a, nbn ) if a ∈ [1/3, 1) and bn ∈ [a ∨ 0.5 + ln ln n
ln n , 1].

Limit is similar to Eschenfeldt & Gamarnik (2015), but reflection at α and a missing drift term.

Easy to show Zn − Yn → −αe1 when dn ≫
√

n log n and
√

n(1 − λn) → α. Hence the
results in Mukherjee et al. (2016), Eschenfeldt & Gamarnik (2015) follow as a special case.
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FCLT for dn√
n → c ∈ (0,∞) around NE points

(Bhamidi, Budhiraja, and D.) FCLT as dn ∼ c
√

n and 1 − λn = log dn
dn

+ αn√
n

If αn → α ∈ (−∞,∞] and Zn(0)
P−→ (z1, z2, 0, . . .) as n → ∞, then

Zn ⇒ (Z1,Z2, 0 . . .) ∈ Dℓ2 [0,∞), where (Z1,Z2) is the unique pathwise solution to

Z1(t) = z1 −
∫ t

0
(Z1(s)− Z2(s))ds − (cecα)−1

∫ t

0

(
ecZ1(s) − 1

)
ds +

√
2B(t)

Z2(t) = z2 −
∫ t

0
Z2(s)ds + (cecα)−1

∫ t

0

(
ecZ1(s) − 1

)
ds

for a 1D standard Brownian motion B.

Remarks

For α < ∞, R.H.S. is not a Lipschitz function of (Z1,Z2). But since the exponential term
opposes the growth of the system, the solution is well defined for a.e. sample path.

Applies with α = ∞ to the case λn = 1 − n−a for fixed a ∈ (1/4, 1/2) (sub-Halfin-Whitt).
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FCLT for 1 ≪ dn ≪
√

n around NE points

(Bhamidi, Budhiraja, D.) FCLT as 1 ≪ dk+1
n ≪ n, 1 − λn = log dn−ξn

dk
n

, and k ∈ N

If eξn → α ∈ [0,∞), Zn(0)
P−→ (z1, . . . zk+1, 0, 0, . . .), then (Zn,1, . . . ,Zn,k−1) ⇒ 0 in DRk−1 (0,∞)

and (
∑k

j=1 Zn,i ,Zn,k+1,ZN,k+2, . . .) ⇒ (X1,X2, 0, . . .) in Dℓ2 [0,∞), where (X1,X2) is the diffusion

X1(t) =
k∑

i=1

zi − (α+ I{k=1})

∫ t

0
X1(s)ds +

∫ t

0
X2(s)ds +

√
2B(t)

X2(t) = zk+1 + α

∫ t

0
X1(s)ds −

∫ t

0
X2(s)ds.

where B is a 1D standard Brownian motion.

Remark

The NE point converges to µn →
∑k

i=1 ei = (1, . . . , 1, 0, . . .). Previous theorems had k = 1.

Most queues will have length k . Brightwell et al. (2018) show similar result for the equilibrium.

Applies to λn = 1 − n−a for a ∈ (0, 1), k ≥ a/(1 − a) and dn = (na log n)1/k .

Limit of the first k − 1 coordinates “instantly” become 0.
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Conclusion

Finding stable bimodules in multi-view data

Bimodule: a group of features in bi-view data with significant aggregate cross-correlation,
and a community in the cross-correlation network.

Bimodule Search Procedure. Finds stable and connected bimodules – a fixed point condition
based on hypothesis tests. Parallel R implementation.

Application to eQTL analysis. SNP-gene bimodules may provide more insights than
traditional pairwise analysis.

Future directions: Theoretical false discovery guarantees for the iterative search and/or
stable bimodules. Extensions to multi-view data and other metrics like co-occurance.

Limit theorems for the Supermarket model with growing choices

Supermarket model: Model for load balancing in large data centers, based on the
randomized ‘Power of d choices’ routing.

Limit theorems in heavy traffic to understand model behavior when the number of choices d
increases with system size.

Future directions: Show interchange of limits and convergence of stationary distributions.
Prove similar limit theorems for related models like the Supermarket model with memory.
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Thank you!

BSP manuscript https://arxiv.org/abs/2009.05079

BSP R Package https://github.com/miheerdew/cbce.

Limit theorems manuscript https://arxiv.org/abs/2006.03621
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Example of a BSP iteration

1 B0 = {G3}

2 A0 = {S4,S5}

3 B1 = {G3,G4}

4 A1 = {S3,S4,S5}
5 B2 = {G3,G4}

6 A2 = {S3,S4,S5}

(A1,B1) = (A2,B2)

Stable bimodule found.
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BSP implementation details

Start from all singletons {s} in SNPs and {g} in Genes, to find a bimodule list B
(possibly empty).

Bimodules often repeat in B, so we filter duplicates:
1 Determine effective number:

Neff =
∑

(A,B)∈B

∑
a∈A,b∈B

(|A||B|N(a, b))−1

2 Hierarchical-cluster elements of B based on Jaccard distances.
3 Select a height to cut the dendrogram so that Neff clusters are made.

R package with fast implementation : https://github.com/miheerdew/cbce.
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Analysis of genomic locations of bimodules

Recall BSP does not use genomic locations of SNPs and Genes. Nevertheless

Proximity of SNPs and genes within the

bimodule.

Almost all (99.3%) bimodules have at

least one local SNP-gene pair.

In addition, almost half of the larger

bimodules found gene and SNPs that

had distal effects.

Chromosomal locations of SNPs and

genes from bimodules.

Bimodule SNPs and Genes distributed

across all 23 chromosomes.

Most small bimodules (95%) were

restricted to single chromosome.

Nearly half of the larger bimodules

spanned 2-11 chromosomes each.
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Concepts from genomics (simplified version)
genome.gov/genetics-glossary

Gene expression

Process used by cells to

assemble protein

molecules based on a

gene.

Gene A region of the genome that encodes

for a protein; ∼30K genes identified in

humans.

Single nucleotide polymorphism (SNP)

A location on the genome that has a

nucleotide variation within the population.

Genetic basis of gene expression

Millions of SNPs are identified in humans.

Which ones influence traits?

Expression quantitative trait loci

(eQTL)
A genomic region (e.g. SNP) that

influences the expression level of one or

more genes.
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Obtaining networks from bimodules

A SNP-gene bimodule (A,B) has aggregate correlation between A and B.

But which edges (s, t) ∈ A × B are significant?

Threshold at τ ∈ (0, 1): Eτ (A,B) = {(s, t) | r 2(s, t) ≥ τ 2, s ∈ A, t ∈ B}

How to choose τ?

Conservative estimate of strongest edges

Since a bimodule must be connected, choose the largest τ∗ ∈ (0, 1) so that

(A ⊔ B,Eτ∗(A,B)) is a connected graph.

Eτ∗(A,B) are called essential-edges of the bimodule.

Thyroid network statistics
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Network statistics from BSP bimodules on GTEx data

Smaller bimods are connected mainly by strong local associations (large τ∗). Eτ∗ is

tree-like.

Larger bimods are connected by strong local + weak distal associations (small τ∗).

Eτ∗ has upto 10x more edges than a tree.
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Enrichment of known gene sets in bimodules

The GO database (http://geneontology.org/) contains collection of gene sets known to

be associated with biological functions.

Consider our 145 bimodules that have 7 or more genes.

We used Fisher’s test to assess overlap of gene sets from these bimodules with

GO sets.

Gene sets from 18 bimodules had significant overlap with gene sets associated to

known biological processes.

But the associated function did not seem thyroid relevant.

Repeating above process with randomly chosen gene sets of the similar sizes did not

detect significant association.
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Sizes of bimodules discovered by various methods
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BSP Thyroid search details

Search details

304K attempted searches.

Majority (277K) give empty set in the first iteration.

Few (20) did not terminate within 20 iterations.

Remaining reached a fixed point in 20 iterations.

92.3% of these fixed points contained the seed singleton.
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Assessing significance using hypothesis testing

How to quantify ΓT ?

ΓT (A)
.
= {t ∈ T | r 2(A, t) is significant}.

Steps

1 ∀t ∈ T obtain p-value p(A, t) from r 2(A, t).

2 reject p-values using multiple-testing correction γα

ΓT (A) = {t ∈ T | p(A, t) ≤ γα}

at some level α ∈ (0, 1).

p(A, t) conditional on intra-correlations in A

A

t

Samples

perm π

r2
π(A, t)

Permutation p-value

Pπ

(
r 2
π(A, t) ≥ r 2

obs(A, t)
)

Fast computation + other details
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Hypothesis testing implementation details

Permutation p-values Permute sample labels of t using π. Define p-value

pA(t)
.
= Pπ

(
r 2
π(A, t) ≥ r 2(A, t)

)
,

which conditions on correlations in A.

Multiple testing correction The adaptive threshold γα chosen from [Benjamini and

Yekutieli, 2001] controls FDR at α.

Monte-Carlo estimation too slow. We fit a shifted gamma distribution to T = r 2
π(A, t)

based on top 3 moments. Moments of T are analytical approximated [Zhou, Gallins

and Wright, 2019].
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Essential-edge networks in GTEx thyroid data
examples from two bimodules
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Comparing bimodules to standard eQTL analysis

Standard eQTL analysis performed using MatrixEQTL (α = 0.05).

Bimodules find most standard eQTLs

84% of eQTLs from trans-analysis, and 51% of eQTLs from cis-analysis. But note

bimodules find SNP-gene networks not just pairs, and

cis-analysis improves power by restricting to local pairs.

New potential eQTLs from bimodules

224/358 large bimodules are not connected under edges from standard cis+trans

analysis.

Essential-edges from bimodules reveal 300 local and 8.8k distal SNP-gene pairs that

are not detected by standard analysis,

but show significance at the network level.
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FCLT for dn = n as λn = 1 − β√
n

Theorem (Eschenfeldt and Gamarnik 2018)

For some β > 0, let dn = n and λn = 1 − β√
n . If Yn(0) ⇒ (y1, y2, 0, 0 . . .) as n → ∞,

then Yn ⇒ (Y1,Y2, 0, 0 . . .) as processes as n → ∞, where B is a SBM and for each

t > 0

Y1(t) = y1 − βt −
∫ t

0
(Y1(s)− Y2(s))ds +

√
2B(t)− η(t) (1)

Y2(t) = y2 + η(t)−
∫ t

0
Y2(s)ds,

Y1(t) ≤ 0, and η(t) =
∫ t

0 I{Y1(s)=0}|dη|(s) is the smallest non-decreasing process that

keeps (1) r.h.s. ≤ 0.

1 Limit is a constrained 2D system driven by 1D BM.
2 Since GN,i(t) : fraction of queues with length ≥ i at time t

by theorem GN,1 = 1 − Op
(
1/

√
n
)

and Gn,2 = Op
(
1/

√
n
)
.

3 Theorem is used to show that average waiting time is O(1/
√

n), same order as

that of a M/M/n system.
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