Asymptotic analysis of the power of choice phenomenon for queuing models

Miheer Dewaskar

Statistics and Operations Research, UNC Chapel Hill.

Probability Seminar, Jan 30th 2020.

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose d?

2 Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for JSQ (d_N) as $d_N o \infty$
- Diffusion limit theorem

3 Summary

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose d?

Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

3 Summary

The balls and bins problem

Simplest model to describe the power-of-choice.

Aim

Sequentially place *n* balls into *n* bin to minimize conflicts when a centralized dispatcher is absent and $n \in \mathbb{N}$ is large.

Strategy Smallest(d):

Each incoming ball

- samples *d* bins uniformly at random with replacement,
- selects the least loaded among these d bin.

Compare: Smallest(1), Smallest(2) and Smallest(∞).

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose d?

Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

3 Summary

The power of choice Choice (d = 2) is much better than no choice (d = 1).

Maximum load is monotonically decreasing in d (coupling argument).

(Mitzenmacher, 2001) As $n \to \infty$, w.h.p:

	Smallest(1)	Smallest(2)	$\texttt{Smallest}(\infty)$
Max. load	$O(\log n)$	$O(\log \log n)$	1

The power of choice

Drastic improvement of d = 2 over d = 1.

Applications (Mitzenmacher, Richa, Sitaraman, 2001)

Hashing, distributed computing, circuit routing and more.

(1日) (1日) (1日)

The power of choice Choice (d = 2) is much better than no choice (d = 1).

Maximum load is monotonically decreasing in d (coupling argument).

(Mitzenmacher, 2001) As $n \to \infty$, w.h.p:

	Smallest(1)	Smallest(2)	$\texttt{Smallest}(\infty)$
Max. load	$O(\log n)$	$O(\log \log n)$	1

The power of choice

Drastic improvement of d = 2 over d = 1.

Applications (Mitzenmacher, Richa, Sitaraman, 2001)

Hashing, distributed computing, circuit routing and more.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Balls and bins

• Power of choice (d = 1 vs. d = 2)

• Dependence on $d \ge 1$

• How to choose d?

Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

3 Summary

-47 ▶

Dependence of maximum load on d

Max. load is $\frac{\log \log n}{\log d} + O(1)$

Theorem : Assume $1 < d_n < \mathsf{Poly}(\log n)$ and $n \to \infty$

The maximum load for the *n* Balls-and-Bins problem using strategy $Smallest(d_n)$ is between

$$\left[\frac{\log \log n}{\log d_n} - 4, \frac{\log \log n}{\log d_n} + 4\right] \qquad \text{w.h.p}$$

Proof formulation (using empirical distribution of bin sizes)

Scale time $t = \{0, \frac{1}{n}, \dots, \frac{n}{n}\} \subseteq [0, 1]$ and let

$$G_n(i,t) = rac{\# \text{ of bins with } \geq i \text{ balls at time } t}{n}$$
 and $g_n(i,t) = \mathbb{E}G_n(i,t).$

Then

- Fixed $t : \{G_n(i, t)\}_{i \ge 1}$ is the distribution of bin sizes at time t.
- Max. bin load is $M^* = \min\{i \mid G_n(i+1,1) = 0\}.$

Dewaskar (UNC)

Power of many choices

Dependence of maximum load on d

Max. load is $\frac{\log \log n}{\log d} + O(1)$

Theorem : Assume $1 < d_n < \mathsf{Poly}(\log n)$ and $n \to \infty$

The maximum load for the *n* Balls-and-Bins problem using strategy $Smallest(d_n)$ is between

$$\left[\frac{\log \log n}{\log d_n} - 4, \frac{\log \log n}{\log d_n} + 4\right] \qquad \text{w.h.p}$$

Proof formulation (using empirical distribution of bin sizes) Scale time $t = \{0, \frac{1}{n}, \dots, \frac{n}{n}\} \subseteq [0, 1]$ and let

$$G_n(i,t) = rac{\# ext{ of bins with } \geq i ext{ balls at time } t}{n}$$
 and $g_n(i,t) = \mathbb{E}G_n(i,t).$

Then

- Fixed $t : \{G_n(i, t)\}_{i \ge 1}$ is the distribution of bin sizes at time t.
- Max. bin load is $M^* = \min \{ i \mid G_n(i+1,1) = 0 \}.$

Dewaskar (UNC)

Power of many choices

Proof (concentration)

Concentration (Luczak and McDiarmid)

$$\boldsymbol{P}\left(\sup_{t}\sup_{i}|G_{n}(i,t)-g_{n}(i,t)|>\frac{\log n}{\sqrt{n}}\right)\leq 2\exp\left(-\frac{1}{2}\log^{2}n\right)$$

No dependence on *d*.

Concentration for maximum (Luczak and McDiarmid)

W.h.p. the maximum bin load M^* is concentrated on the two values $\{i_n^*, i_n^* + 1\}$ where

$$i_n^* = \min\left\{i \mid g_n(i,n) \leq \frac{\ln n}{\sqrt{n}}\right\}.$$

Final step (to show)

$$\frac{\log \log n}{\log d_n} - 3 \le i_n^* \le \frac{\log \log n}{\log d_n} + 3 \qquad \text{eventually as } n \to \infty.$$

Dewaskar (UNC)

Proof continued (properties of the process)

Recall

We scaled time $t = \{0, \frac{1}{n}, \dots, \frac{n}{n}\} \subseteq [0, 1]$ and defined

$$G_n(i,t) = rac{\# ext{ of bins with } \geq i ext{ balls at time } t}{n}$$
 and $g_n(i,t) = \mathbb{E}G_n(i,t).$

Let $G_n(t) = (G_n(i, t))_{i>1}$ be the total configuration at time t.

G_n is discrete time markov-chain

For any t and $i \ge 1$

$$\mathbb{E}[G_n(i,t+1/n) - G_n(i,t) \mid \boldsymbol{G_n}(t)] = \frac{1}{n}(G_n(i-1,t)^{d_n} - G_n(i,t)^{d_n})$$

$g_n(i, t)$ satisfies recursion

$$g_n(i,t) = \int_0^t g_n(i-1,s)^{d_n} - g_n(i,s)^{d_n} ds + O\left(\frac{d_n^2}{n}\right)$$

Dewaskar (UNC)

Completing the proof (analyze the recursion)

Approximating g_n using an ODE Suppose $\{g(i, t)\}$ satisfy:

$$g(i,t)=\int_0^t g(i-1,s)^{d_n}-g(i,s)^{d_n}ds \qquad orall t\in [0,1] ext{ and } i\geq 1$$

Then $\sup_{s\in[0,1]} |g_n(i,s) - g(i,s)| \leq \frac{15e^i d_n^{i+2}}{n}$ for any $i \geq 1$.

Estimates on the growth of the ODE

$$\exp(-d_n^{i+1}) \leq g(i,1) \leq \exp(-d_n^{i-1}).$$

Double exponential decay in i.

Recall $d_n < \text{Poly}(\log n)$ and $i_n^* = \min\{i \mid g_n(i, n) \leq \frac{\ln n}{\sqrt{n}}\}$. Then

$$\frac{\log\log n}{\log d_n} - 3 \leq i_n^* \leq \frac{\log\log n}{\log d_n} + 3 \quad \text{ eventually as } n \to \infty \ .$$

Dewaskar (UNC)

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose d?

Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

3 Summary

-47 ▶

4 E b

How to choose d_n ?

Recall: The maximum for the *n* Balls-and-Bins problem using strategy $Smallest(d_n)$ is between

$$\left[\frac{\log\log n}{\log d_n} - 4, \frac{\log\log n}{\log d_n} + 4\right] \qquad \text{w.h.p,}$$

provided that $1 < d_n < Poly(\log n)$.

- Need $d_n \rightarrow \infty$ to keep the maximum load bounded.
- Choose $d_n = (\log n)^{\delta}$ to keep the maximum load under $4 + \frac{1}{\delta}$, w.h.p.

We can get near optimal performance using Smallest(log n).

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose *d*?

2 Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for JSQ (d_N) as $d_N o \infty$
- Diffusion limit theorem

Summary

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose *d*?

2 Supermarket model

Introduction

- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

Summary

4 E b

The Supermarket Model

Image credit : Debankur Mukherjee

How to route these customers?

- At random. Overhead = 0. JSQ(1)
- Join the shortest queue (JSQ).
 Overhead = N. JSQ(N)
- JSQ(d) for $d \ge 2$. Overhead = d.

JSQ(d): Choose a random size-d subset of servers and join the shortest queue among that subset.

Application to load balancing JSQ is optimal

Data centers : customers are connections and computers are the N servers.

- Customers can't be queued at the dispatcher.
- Keep queues balanced to make best use of resources.
- Need efficiency $(\frac{\lambda_N}{\mu} \uparrow 1)$.

JSQ:

 Optimial among all non-anticipating policies (Winston, 1977).

Image credit : Debankur Mukherjee

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose *d*?

Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

Summary

4 E b

Asymptotic performance of JSQ Halfin-Whitt regime : $\lambda_N = 1 - \frac{\beta}{\sqrt{N}}$ Let • $G_{N,i}(t) = \frac{\text{\# of servers with } \geq i \text{ customers at time } t}{N}$. • $Z_{N,1} = \sqrt{N}(G_{N,1} - 1)$ and $Z_{N,i} = \sqrt{N}G_{N,i}$ for i = 2, 3...Diffusion limit for JSQ (Eschenfeldt and Gamarnik, 2015) If $(Z_{N,1}(0), Z_{N,2}(0)) \xrightarrow{P} (z_1, z_2)$ with $z_1 \leq 0, Z_{N,3}(0) = 0$ as $N \to \infty$, then $(Z_{N,1}, Z_{N,2}, Z_{N,3}) \Rightarrow (Z_1, Z_2, 0)$ in \mathbb{D}^3 where $Z_1(t) = z_1 + \sqrt{2}B(t) - \beta t - \int_0^t Z_1(s) - Z_2(s)ds - U(t)$

$$Z_2(t) = z_2 + U(t) - \int_0^t Z_2(s) ds$$

B is a brownian motion, and *U* is the unique non-decreasing process so that U(0) = 0, $\int_0^t \mathbb{I}_{\{Z_1(s) < 0\}} dU(s) = 0$ and $Z_1 \le 0$.

Can JSQ(d) be as good as JSQ? letting $d \to \infty$

Need $d_N \rightarrow \infty$ for a typical customer's waiting time to vanish like in JSQ (Gamarnik, Tsitsiklis, Zubeldia, 2016).

(Mukherjee, Borst, Leeuwaarden, Whiting 2018)

- As long as $d_N \to \infty$, the first order (fluid-scale) limiting behaviors of $JSQ(d_N)$ and JSQ agree. (Universality of fluid limit.)
- The second order (diffusion-scale) behavior of $JSQ(d_N)$ in the Halfin-Whitt regime is the same as JSQ if $\frac{d_N}{\sqrt{N} \log N} \to \infty$. (Diffusion level optimality.)

We provide explicit limit theorems for first and second order behavior of $JSQ(d_N)$, as $d_N \to \infty$ and $\lambda_N \to 1$.

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose *d*?

Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

Summary

4 E b

Crash course on Skorokhod map

If $x \in \mathbb{D}_+ \doteq \{ f \in \mathbb{D} \mid f(0) \ge 0 \}$, then $\exists ! y \in \mathbb{D}_+$ so that

•
$$z(t) = x(t) + y(t)$$

•
$$z(t) \geq 0$$

- y satisfies
 - ▶ y(0) = 0
 - y is non-decreasing

•
$$\int_{[0,\infty)} z(s) dy(s) = 0$$

Explicit Skorokhod map

Define $\Phi : \mathbb{D}_+ \to \mathbb{D}_+^2$ by $\Phi(x) = (z, y)$ where

$$y(t) = \sup_{0 \le s \le t} x^{-}(s)$$
$$z(t) = x(t) + y(t)$$

$\boldsymbol{\Phi}$ is Lipscitz with respect to the supremum norm

$$\|\Phi(x) - \Phi(y)\|_{*,t} \le 2 \|x - y\|_{*,t}$$

where $\left\|f\right\|_{*,t} = \sup_{s \in [0,t]} |f(s)|$.

3

22 /

イロト イヨト イヨト イヨト

Fluid behavior of $JSQ(d_N)$ Recall: $G_N(t) = (G_{N,1}(t), G_{N,2}(t), G_{N,3}(t), ...)$

Fluid limit as $d_N \to \infty$ and $\lambda_N \to \lambda$ If $G_N(0) \xrightarrow{P} (r_1, r_2, ...)$ in l_1 , then $G_N \xrightarrow{P} g$ in $D([0, \infty) : l_1)$ where $g = (g_1, g_2, ...)$ is the unique solution to $(g_1, y_1) = \Phi \left(r_1, r_2, ..., r_n, r_n, r_n\right) = \frac{1}{2}$

$$(g_i, v_i) = \Phi_1 \Big(r_i - \int_0^{\infty} g_i(s) - g_{i+1}(s) ds + v_{i-1}(\cdot) \Big) \qquad i = 1, 2, \dots$$

and $v_0(t) = \lambda t$. $\Phi_1 : \mathbb{D}_{\leq 1} \to \mathbb{D}^2$ is the Skorokod map at 1. Universality.

- Proof uses tightness + uniqueness argument.
- (Mukherjee, Borst, Leeuwaarden, Whiting 2018) identify limiting equations but can't show uniqueness.
- Formulation using Skorokhod map shows uniqueness.

Dewaskar (UNC)

Power of many choices

Fluid behavior of $JSQ(d_N)$ Recall: $G_N(t) = (G_{N,1}(t), G_{N,2}(t), G_{N,3}(t), ...)$

Fluid limit as $d_N \to \infty$ and $\lambda_N \to \lambda$ If $G_N(0) \xrightarrow{P} (r_1, r_2, ...)$ in l_1 , then $G_N \xrightarrow{P} g$ in $D([0, \infty) : l_1)$ where $g = (g_1, g_2, ...)$ is the unique solution to $(g_i, v_i) = \Phi_1 \left(r_i - \int_0^{\cdot} g_i(s) - g_{i+1}(s) ds + v_{i-1}(\cdot) \right) \qquad i = 1, 2, ...$

and $v_0(t) = \lambda t$. $\Phi_1 : \mathbb{D}_{\leq 1} \to \mathbb{D}^2$ is the Skorokod map at 1. Universality.

- Proof uses tightness + uniqueness argument.
- (Mukherjee, Borst, Leeuwaarden, Whiting 2018) identify limiting equations but can't show uniqueness.
- Formulation using Skorokhod map shows uniqueness.

Dewaskar (UNC)

Power of many choices

Proof overview (fluid limit)

Representation as Poission time-change

For i = 1, 2, ...

$$egin{split} G_{N,i}(t) = & G_{N,i}(0) - rac{1}{N} D_i igg(N \int_0^t G_{N,i}(s) - G_{N,i+1}(s) ds igg) \ &+ rac{1}{N} A_i igg(\lambda_N N \int_0^t G_{N,i-1}(s)^{d_N} - G_{N,i}(s)^{d_N} ds igg) \end{split}$$

where $\{A_i\}_{i \ge 1}, \{D_i\}_{i \ge 1}$ are independent rate-1 poission processes.

Subtract compensators:

$$G_{N,i}(t) = G_{N,i}(0) - \int_0^t G_{N,i}(s) - G_{N,i+1}(s) ds + \lambda_N \int_0^t G_{N,i-1}(s)^{d_N} - G_{N,i}(s)^{d_N} ds + M_{N,i}(t)$$

 $M_N(t) = (M_{N,i}(t))_{i \ge 1}$ is a collection of martingales with $\mathbb{E} \|M_N\|_{*,T} \rightarrow 0$

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose *d*?

2 Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

Summary

4 E b

Ingredient : diffusion centering

Fix N. Omiting the martingale term, the previous ODE is:

$$egin{aligned} G_{N,i}(t) &= G_{N,i}(0) + \int_0^t (\lambda_N G_{N,i-1}(s)^{d_N} - G_{N,i}(s)) ds \ &- \int_0^t (\lambda_N G_{N,i}(s)^{d_N} - G_{N,i+1}(s)) ds \end{aligned}$$

Unique fixed point : $\mu_N = (\lambda_N, \lambda_N^{1+d_N}, \lambda_N^{1+d_N+d_N^2}, \ldots) \in I_1.$

Diffusion scaled process

$$\boldsymbol{Z_N} = \sqrt{N}(\boldsymbol{G_N} - \boldsymbol{\mu_N})$$

This is different from the usual fluid limit centering, which may not be stable.

Diffusion behavior for $JSQ(d_N)$: reflected case Recall: $Z_N = \left(\sqrt{N}(G_{N,1} - \lambda_N), \sqrt{N}(G_{N,2} - \lambda_N^{1+d_N}), \ldots\right).$

Diffusion limit as $\lambda_N = 1 - \left(\frac{\log d_N}{d_N} + \frac{\alpha}{\sqrt{N}}\right)$ and $\sqrt{N} \ll d_N \ll N^{2/3}$

If $Z_N(0) \xrightarrow{P} (z_1, z_2, 0, 0...)$ in l_2 with $z_1 \leq \alpha$, then $Z_N \Rightarrow (Z_1, Z_2, 0, 0...)$ in $D([0, \infty) : l_2)$ where (Z_1, Z_2) satisfy

$$egin{split} Z_1, U_1 &= \Phi_lpha igg(z_1 + \sqrt{2}B(\cdot) - \int_0^{\cdot} (Z_1(s) - Z_2(s)) ds igg) \ Z_2(t) &= z_2 + U_1(t) - \int_0^t Z_2(s) ds, \end{split}$$

B is a standard Brownian motion and $\Phi_{\alpha} : \mathbb{D}_{\leq \alpha} \to \mathbb{D}^2$ is reflection at α .

• When $d_N \gg \sqrt{N} \log N$, limit agrees with JSQ (Eschenfeld and Gamarnik, 2015) and (Mukherjee, Borst, Leeuwarden, Whiting 2018).

Proof idea (diffusion limit)

Center and scale the generating equation

$$\begin{aligned} Z_{N,1}(t) &= Z_{N,1}(0) - \int_0^t Z_{N,1}(s) - Z_{N,2}(s) ds \\ &+ \sqrt{N} M_{N,1}(t) - \int_0^t t_{N,1}(Z_{N,1}(s)) ds \\ Z_{N,2}(t) &= Z_{N,2}(0) + \int_0^t t_{N,1}(Z_{N,1}(s)) ds - \int_0^t Z_{N,2}(s) ds + o_p(1). \end{aligned}$$

Under hyothesis $\sqrt{N}M_{N,1} \Rightarrow \sqrt{2}B$.

Reflection term

Fix any M > 0. Then uniformly on $z \in [-M, M]$

$$t_{N,1}(z) = (1 + o(1)) \exp\left(\frac{d_N}{\sqrt{N}}(z - \alpha)\right) \frac{\sqrt{N}}{d_N}$$

Proof outline (diffusion limit) Choose M > 0: $T_{N,M} = \inf \{ t \mid ||Z_N(t)||_2 \ge M \} \land T$

t

 $Z_{N,1}$ will not exceed α on $[0, T_{N,M}]$

$$\sup_{\in [0,T_{N,M}]} (Z_{N,1} - \alpha)^+ \xrightarrow{P} 0$$

Rewrite using skorokhod map

$$egin{split} & Z_{N,1}, U_N = \Phi_lpha igg(Z_{N,1}(0) - \int_0^t Z_{N,1}(s) - Z_{N,2}(s) + \sqrt{2} B_N(\cdot) igg) + o_
ho(1) \ & Z_{N,2}(t) = Z_{N,2}(0) + U_N(t) - \int_0^t Z_{N,2}(s) ds + o_
ho(1) \end{split}$$

where $B_N \Rightarrow B$, and the $o_p(1)$ terms converge uniformly on $[0, T_{N,M}]$.

Tightness

Choose *M* large enough so that $T_{N,M} \ge T$ enventually.

Dewaskar (UNC)

29

Diffusion behavior for $JSQ(d_N)$: non-reflection case

Diffusion limit as
$$\frac{d_N}{\sqrt{N}} \rightarrow 0$$
 and $d_N \mu_{N,k+1} \rightarrow \alpha$
If $Z_N(0) \xrightarrow{P} (z_1, \dots, z_{k+1}, 0, 0, \dots)$ in l_2 , then
 $Z_N \Rightarrow (0, \dots, 0, Z_k, Z_{k+1}, 0, 0, \dots)$, where
 $Z_k(t) = z_k - (\alpha + \mathbb{I}_{\{k=1\}}) \int_0^t Z_k(s) ds + \int_0^t Z_{k+1}(s) ds + \sqrt{2}B(t)$
 $Z_{k+1}(t) = z_{k+1} + \alpha \int_0^t Z_k(s) ds - \int_0^t Z_{k+1}(s) ds$

Here B is a standard Brownian motion.

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

Balls and bins

- Power of choice (d = 1 vs. d = 2)
- Dependence on $d \ge 1$
- How to choose d?

Supermarket model

- Introduction
- Analysis of join the shortest queue
- Fluid limit for $JSQ(d_N)$ as $d_N \to \infty$
- Diffusion limit theorem

3 Summary

-47 ▶

4 E b

Future direction : distributed load balancing

Blogs interested in distributed balancing using Power-of-d scheme:

- Nginx
- Haproxy
- Mark's

Network model from (Budhiraja, Mukherjee, Wu, 2019).

Mentors and collaborators: Shankar Bhamidi and Amarjit Budhiraja.

Supporting Grants

- NIH R01 HG009125-01
- National Science Foundation, DMS-1613072